
A M E R I C A N  M E T E O R O L O G I C A L  S O C I E T Y M A R C H  2 0 2 1 E635

Multiscale Forecasting of  
High-Impact Weather
Current Status and Future Challenges

Sharanya J. Majumdar, Juanzhen Sun, Brian Golding,  
Paul Joe, Jimy Dudhia, Olivier Caumont, Krushna Chandra Gouda,  
Peter Steinle, Béatrice Vincendon, Jianjie Wang, and Nusrat Yussouf

ABSTRACT: Improving the forecasting and communication of weather hazards such as urban 
floods and extreme winds has been recognized by the World Meteorological Organization (WMO) 
as a priority for international weather research. The WMO has established a 10-yr High-Impact 
Weather Project (HIWeather) to address global challenges and accelerate progress on scientific 
and social solutions. In this review, key challenges in hazard forecasting are first illustrated and 
summarized via four examples of high-impact weather events. Following this, a synthesis of the 
requirements, current status, and future research in observations, multiscale data assimilation, 
multiscale ensemble forecasting, and multiscale coupled hazard modeling is provided.
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F ollowing the conclusion of the World Meteorological Organization (WMO)/World Weather  
 Research Programme (WWRP) THORPEX project (Parsons et al. 2017), three new projects  
 were launched with a view toward global collaboration on advancing prediction on 

multiple scales. One of these projects, the High-Impact Weather Project (HIWeather), was 
launched in 2015 and seeks to “promote co-operative international research to achieve a 
dramatic increase in resilience to high impact weather, worldwide, through improving forecasts 
for timescales of minutes to two weeks and enhancing their communication and utility in 
social, economic and environmental applications.”1 HIWeather emphasizes the relationships 
between key weather and societal drivers for (i) urban flooding, (ii) extreme local wind, (iii) 
urban heat waves and pollution, (iv) wildfires, and (v) disruptive winter weather. Decision-
makers taking actions to mitigate against the impacts of these 
hazards need probabilistic impact-oriented forecast information 
across a variety of lead times (see Fig. 1 for the “ready, set, go” 

1 http://hiweather.net/

Fig. 1. Action timelines for selected responses to urban flooding. The upper axis refers to actions 
in a major river or coastal flood, for which evacuation requires several days’ notice and early warn-
ings up to 2 weeks ahead may be available, while the lower axis refers to flash floods affecting 
smaller areas and for which less warning is possible. Response actions are categorized according 
to the risk threshold at which they are initiated (bearing in mind that risk encompasses both 
probability and impact), in a “ready, set, go” sequence represented by the colors yellow, orange, 
and red. Consistency of advice is important as the event approaches and the shortest-lead-time 
nowcasts are valuable in both scenarios for optimizing the rescue and recovery phase.
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timeline for the urban flooding hazard, designed by the HIWeather Task Team). To address 
the broad scope of the warning process, the HIWeather project has five research themes: 
Predictability and Processes; Multiscale Hazard Forecasting; Human Impacts, Vulnerability 
and Risk; Communication; and Evaluation, but much of the work is carried out in cross-cutting 
activities. Here we focus on the Multiscale Hazard Forecasting theme, to which the authors of 
this paper contribute. The purpose of this paper is to review the state of forecasting of high-
impact weather events in the context of the warning chain described in Golding et al. (2019) 
so as to establish priorities and recommendations for future work.

We first set the scene with four cases from across the globe that focus on short-range fore-
casting of urban flooding, localized extreme wind, and wildfires. We then continue with a 
review of methodologies applicable to the forecasting of all hazards and their parent weather 
systems across multiple scales. We note that hazards may be interconnected; for example, 
extreme winds and flooding from tropical cyclones, or wildfires affected by localized extreme 
winds. Given these complexities, it is important to consider whether some of the challenges 
identified from these examples can be generalized, or if some are specific to a particular type 
of meteorological event, infrastructure or communication mechanism. For example, com-
mon global problems include the influence of terrain, the need for accurate real-time rainfall 
estimates for nowcasting, and the need to improve predictions of convective initiation. On the 
other hand, specific local challenges arise in observational infrastructure, forecasting, and 
communication due to cultural, economic, and political differences. In this paper, we restrict 
our attention to commonalities and disparities in the areas of observations, data assimilation, 
ensemble forecasting, and coupled hazard modeling.

Examples of high-impact weather events
Every year there are numerous weather-related disasters around the world, resulting in many 
fatalities and injuries, the displacement of large populations, and substantial repair and 
recovery costs (CRED 2019). We present brief descriptions of four recent examples of weather-
related disasters, including an outline of the weather, the resulting hazards and their impact, 
a summary of the warning timeline and resulting mitigation actions, and an assessment of 
the challenges and pointers for future development. While these examples were chosen to 
give a spread of geographical location and hazard, they are only a small sample of the chal-
lenges faced by countries across the world in forecasting and responding to high-impact 
weather. At the end, in Table 1, we summarize some features of these examples that appear 
to be generic and that highlight some challenges for the future development of forecasting 
and warning capabilities.

Table 1. Common forecasting challenges for high-impact weather events.

Challenge 1: Early information to enable preparation. Information is 
needed by emergency managers and by those who will be affected. 
Early information is necessarily uncertain. The better the information 
is about the nature of that uncertainty, the more appropriate the 
preparation as the event approaches. Improving numerical model-
ing and multiscale ensemble prediction are the keys to meet this 
challenge.

Challenge 2: Early information to enable early action. To avert a major 
disaster, costly and time-consuming actions, including evacuation, may be 
needed. Information available at the time is critical to determine the scale 
of evacuation, safe evacuation routes and destinations, and to persuade 
reluctant people to move. This challenge requires improved numerical 
modeling, multiscale ensemble prediction, data assimilation, and coupled 
modeling.

Challenge 3: Precise information to enable targeted response. 
Emergency managers respond dynamically to the specific impacts of 
the hazard as it develops. In urban areas this detailed information is 
ultimately required at block level. Monitoring and very short-range 
forecasting of the hazard provides the situational awareness required for 
a fast and effective response. The key areas of improvement required to 
meet this challenge are hazard observations and nowcasting.

Challenge 4: Information on the nature of the threat. Decision-makers need 
to know what the hazard will be and what impact it will have. Aspects of the 
weather that create hazards are not those typically focused on by forecast 
verification. Coupling weather and hazard models can help the detection and 
correction of weaknesses in weather forecasts, such as biases in the extremes. 
Improvements in coupled data assimilation, modeling, and ensemble prediction 
are necessary for this challenge.
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North America: Urban flooding from Tropical Storm Harvey (2017). Tropical Storm 
Harvey (Fig. 2) has to date been the most significant tropical rainfall event in U.S. history 
(Blake and Zelinsky 2018). It resulted in the loss of 68 lives and was the second-costliest tropi-
cal cyclone in U.S. history (adjusting for inflation). Rain was intense and widespread, some 
localities receiving approximately 60 in. (~1.5 m) of rain, producing major to catastrophic 
flash flooding and river flooding.

From the time when the U.S. NOAA/National Weather Service (NWS)/National Hurricane 
Center (NHC) started reissuing advisories for a regenerated Harvey in the Gulf of Mexico 
on 23 August 2017, 3 days before the most intensive flooding began, they included key 

messages stating that “several days of heavy rainfall” were likely over regions that included 
the Houston area, and that the rainfall “could cause life-threatening flooding.” The track and 
stall of Harvey’s center were captured accurately in NHC’s forecasts, based on a consensus of 
operational global and regional forecast models, and the rainfall threat was consistently well 
communicated. NWS offices in the affected areas in Texas issued 372 tornado, flash flood, 
and severe thunderstorm warnings during 25–30 August (NOAA 2018). Many of these warn-
ings were based on rapidly updated radar imagery and were credited as a major motivator 
for public action and the saving of lives. Operational deterministic forecasts including the 
High-Resolution Rapid Refresh (HRRR; Benjamin et al. 2016), hydrologic ensemble forecasts, 
and probabilistic quantitative precipitation forecasts, which are complementary products 
provided by different NWS centers, were used.

Challenges. The main forecasting challenges cited by NOAA included (i) the evolution of 
Harvey’s rainbands; (ii) the duration and trajectory of precipitation near the center; (iii) a 
dry bias to the east and northeast of the storm center; (iv) the timing and location of locally 
extreme rainfall; (v) the bursting of banks of rivers and reservoirs; (vi) the lack of products 
to communicate the impacts of an unprecedented amount of rain; and (vii) the need for 
probabilistic information, especially rainfall, at least 2 days in advance (NOAA 2018). A key 
lesson was the critical importance of mutual understanding and messaging of precipitation 
and flooding. A complication was the presence of tornadoes in the rainbands, with simulta-
neous tornado and flash flood warnings producing conflicting public guidance (previously 
documented by Nielsen et al. 2015).

Fig. 2. Timeline leading to the impacts from Tropical Storm Harvey (2017).
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Europe: Large-scale flooding (2016). Following a wet winter and spring, intense rainstorms 
on 28 May 2016 were followed by heavy precipitation from a frontal disturbance giving 4-day 
totals of 80–120 mm in central France (Fig. 3). The Loing River rose rapidly at Montargis, 
110 km southwest of Paris, with maximum water levels exceeding the century record set in 
1910. Supplemented by additional rain (~20 mm) in northeastern France, the flooding reached 
Paris on 3 June, with the Seine River level reaching 6.10 m in Paris-Austerlitz. A total of 1,400 
French municipalities were placed in a “natural disaster” status for the events that occurred 
from 27 May to 3 June and 15,000 people were evacuated (van Oldenborgh et al. 2016; 
Perrin et al. 2017).

The rainy episode of 29–30 May was predicted from 28 May with uncertainty in the location 
and total expected amounts. The first weather watches were issued on 30 May, recommending 
extreme vigilance in the center and north of France. On 27 May, the European Flood Awareness 
System began to disseminate information for 1–3 June to the Vigicrues national flood forecasting 
service about significant river level peaks. The SIM hydrological model driven by the ECMWF 
ensemble also predicted alert thresholds at about this time (Ramos et al. 2017). Flood watches 
issued by the Vigicrues national flood forecasting network reached maximum alert level (red) 
for the first time on some rivers on 31 May. Red watch levels remained in force up to 2 June.

Challenges. While the rainfall amounts were well forecasted 2–3 days ahead, the location, 
timing, and spatial extent of the extremes were less well predicted. Hydrological monitoring 
worked well except when gauges were lost due to flooding. However, there were shortcomings 
in the flood forecasts and better hydrological data assimilation is needed. More effective com-
munication of these forecasts and their associated uncertainty to civil protection would have 
allowed more timely responses. A need for improved coordination between meteorological and 
hydrological watch messages was identified. The role of human interpretation remains crucial.

East Asia: Wind and storm surge impacts from Typhoon Hato (2017). Super Typhoon Hato 
made landfall in Zhuhai, China, on 23 August 2017 (Fig. 4). It brought destructive wind and 
record-breaking storm surge to the city and other parts of the highly populated Pearl River 
Delta (Liu et al. 2018). Many buildings and public facilities were damaged, including trans-
port, communication, the electrical grid, and trees.

Fig. 3. Timeline leading to the flooding impacts in France (2016).
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Two days before Hato’s landfall, the China Meteorological Administration issued the blue 
typhoon warning signal (the lowest level), with forecasts of landfall location, time, wind and 
rainfall, and corresponding defensive notices. One day later, the warning was upgraded to brown 
with increased forecast wind intensity (35–42 m s−1). Seven hours before the center of Hato made 
landfall, the warning was changed to the highest level (red) with forecast winds of 40–48 m s−1.

Challenges. Although the track of Hato was predicted reasonably well in the 48 h before 
landfall, the intensity was underpredicted by models and by both central and regional weather 
offices until a very short lead time (<8 h). The complex challenges for Hato were (i) to forecast 
the rapid intensification (−45 hPa in 24 h and +15 m s−1 in 12 h) observed near the coast 
during the 24 h before landfall (Zhang et al. 2018); (ii) to predict the cumulative impacts of 
strong wind and the astronomical tide on storm surge in the cities; and (iii) to identify and 
nowcast accompanying tornado events. Other lessons include the need for timely public 
warnings and close cooperation between forecasters and decision-makers, not only to help 
understand the risks and impacts of the typhoon but also to take the right actions for quick 
rescue and recovery.

Australia: Wildfires (2013). Following a wet spring and hot start to summer, an outbreak of 
severe wildfires in the Australian state of Tasmania occurred on 3–4 January 2013 (Fig. 5). 

Fig. 4. Timeline leading to the impacts from Typhoon Hato (2017).

Fig. 5. Timeline leading to the impacts from the Australian wildfires (2013).
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Some of the fires were in tourist areas during the peak holiday season, and record high 
temperatures were recorded at several observing sites. The rugged terrain limited access to 
settlements in the worst affected area. Since these fires occurred only 4 years after Australia’s 
worst bush fire disaster up to that time (the “Black Saturday” fires), the level of community 
preparedness was perhaps heightened.

Seasonal outlooks from the Australian Bureau of Meteorology (2012) predicted raised prob-
abilities of a dry and hot summer associated with neutral El Niño and Indian Ocean dipole indices 
and a warm Indian Ocean. The heat wave in southeastern Australia was associated with a large 
high pressure system and was well predicted by global models at medium range time scales. The 
Australian Forest Fire Danger Index, derived from these model runs and incorporating vegeta-
tion information, gave very high to extreme fire danger levels in the days leading up to the fires.

Challenges. The subsequent inquiry highlighted the value of experimental modeling of fire be-
havior and its interaction with the atmosphere (Tasmanian Government 2013). Once the fires 
had broken out, the PHOENIX RapidFire model (Tolhurst et al. 2008) was used to predict fire 
behavior given wind forecasts. The effect of atmospheric stability on fire behavior was empha-
sized, particularly the feedback between convection, fire ventilation and increasing wind speed/
decreasing humidity, and the lofting of embers creating further spot fires. This in turn affected 
visibility (from smoke/debris) and low-level turbulence, influencing the use of aircraft to assist in 
fire control. Making these modeling systems operational is an important future development that 
will assist in making better decisions for safe evacuation of residents and protection of firefighters.

The above four examples illustrate some common features of high-impact weather events 
that challenge our forecasting capabilities on multiple scales. These are summarized in 
Table 1. One important theme that exists at all stages of the forecast and warning process is 
the communication of the information. Even when skillful forecasts are made, effective com-
munication at all stages is essential for hazard avoidance or mitigation. While communication 
is a central research theme of the HIWeather project, a detailed synthesis of communication 
of high-impact weather warnings and decision-making processes is beyond the scope of this 
paper. Instead, the interested reader is referred to activities conducted by the HIWeather task 
team in Communication, and Taylor et al. (2018) and accompanying papers in a special issue 
of the International Journal of Disaster Risk Reduction. Their key points include the need for 
timely and accessible information, varying needs of different user groups, and communica-
tion of the hazards instead of the meteorological variables. Additionally, challenges remain 
in the messaging and communication of forecast uncertainty, and these are additional central 
topics in HIWeather. One example of how the messaging challenge is being addressed is the 
NHC’s annual training of meteorologists in WMO Regional Association RA-IV and emergency 
managers on probabilistic forecasts of tropical cyclones.

The remainder of this paper provides a review of the primary elements of the multiscale 
forecasting process, mindful of the fact that this is only one section of the full warning chain 
(Golding et al. 2019). The elements of the forecasting process are introduced sequentially, 
beginning with the collection of observations and nowcasting that is sometimes employed 
based on these observations. A central component is data assimilation, through which ob-
servations are blended with numerical models to provide a gridded analysis (or ensemble of 
analyses). The review concludes with probabilistic predictions created from these analyses, 
and recent progress in coupled hazard forecasting.

Observations
Observations and monitoring networks evolve over time in quantity, quality, and diversity with 
technological advances. Accurate observations on all scales are required for many facets of 
the forecasting and warning process, including scientific understanding, hazard monitoring, 
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nowcasting, data assimilation, and forecast evaluation and verification. In this section we 
emphasize hazard monitoring and nowcasting, with a section on data assimilation to follow.

Hazard monitoring: Requirements and current status. In a hazardous weather situation, it is 
necessary to maintain both situational awareness of the evolving meteorological environment 
on the medium-to-large scales in space and time, and a focus on the specific hazardous weather 
elements on the smaller scales for strategic and tactical decisions and actions. An accurate repre-
sentation of the environment that may alter (and be altered by) the hazardous weather system is 
critical to the prediction of small-scale hazardous weather, and the issuance of weather watches. 
Hence, continuous, multiscale observations are required. In addition to the environment, the 
evolution of the location and nature of the hazard itself needs to be known accurately at all times, 
in order to enable hazard warnings to be initiated, updated, or discontinued, and for response 
and recovery operations to be managed effectively (e.g., Fig. 1). Hazard observations are also 
required for verification of early warnings and to enable research into improving hazard predic-
tion. The discussion in this section focuses mostly on observations of hazards on smaller scales.

Many hazards have highly heterogeneous distributions and are difficult to observe. 
Examples include snow in undulating terrain that is alternately above and below the freezing 
level and fire risk in partially wooded country. The accurate spatial and temporal monitoring 
of such hazards may require a combination of observing systems, integrated using statistical 
and/or process modeling methods. Most importantly, hazard observations must meet the 
needs of the decision-makers. Some parameters need to be quantitative and highly accurate, 
whereas for others, a qualitative or binary indication may be sufficient. When observations 
are made for multiple uses, trade-offs have to be made, but this should not be at the expense 
of providing timely information for key decisions.

It is projected that by 2050, 68% of the world’s population will be concentrated in urban 
centers (United Nations 2018). As the focus on urban areas increases, the nature of weather-
related hazard monitoring will evolve, particularly for those hazards that threaten the 
infrastructure services that maintain urban life. Since these hazards, particularly winds, 
lightning, floods, and heat, are strongly influenced by the urban fabric, the traditional nature 
of monitoring that is largely independent of human structures will need to change.

Observations of weather hazards are conventionally made by human observers, in situ in-
strumentation, and remote sensing platforms (Fig. 6, left panel). To accompany the discussion 

Fig. 6. (left) The current global observing network provides in situ and remotely sensed data for hazard monitoring, nowcast-
ing, and data assimilation. Observing methods are standardized to ensure that results are compatible for use in specifying the 
climate and the initial state for global weather prediction. (right) Potential future sources of weather and hazard observations 
that may need to be accommodated in hazard monitoring and forecasting systems (source: World Meteorological Organization).
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below, some examples of recent advances in hazard monitoring and key references are pro-
vided in Table 2.

Human observations include variables that require visual classification. Although 
reproducible results require skilled professionals, some requirements may be met with 

Table 2. Summary of recent advances in hazard monitoring by ground-based, airborne, and space-based sensors, with key references.

Recent Advances: Hazard Monitoring

Instrumentation Capability Key References

Ground-based sensors

 Centimeter radar Doppler wind and reflectivity of precipitation cloud; Doppler wind of  
boundary layer; precipitation type (with dual polarization); refractivity;  
quantitative precipitation estimate

Ryzhkov and Zrnić (2019); 
McLaughlin et al. (2009)

 Millimeter radar Doppler wind and reflectivity for fog, cloud, and light precipitation Kollias et al. (2007)

 Lidar Doppler measurements of boundary layer wind and turbulence profiles;  
aerosols and air quality; temperature and water vapor profiles

Wulfmeyer et al. (2015)

 Lightning detection  
  network

Remotely sensed electromagnetic emissions (ground and spaced based) that 
directly observe lightning; proxy for rainfall

Orville (2008)

 Radiosondes Vertical profiles of temperature, water vapor, wind, used in satellite  
calibration and data assimilation

Ingleby et al. (2016)

 Radiometers Temperature and water vapor profiles; liquid water path Westwater et al. (2005)

 Cell phones Pressure and temperature sensors Mass and Madaus (2014);  
Droste et al. (2017)

 Ground transportation Precipitation type and rate, temperature, and other observations from mobile 
sensors on vehicles

Mahoney and O’Sullivan (2013)

 Social media Visual reports of hazards and impacts Elmore et al. (2014)

 Low-cost, compact  
  weather stations

Meteorological measurements with low-cost infrastructure in both rural and  
urban environments

van de Giesen et al. (2014)

 Air quality sensors Small, low-cost sensors measuring air quality Jiao et al. (2016)

Airborne sensors

 Dropwindsondes Temperature, pressure, relative humidity, vertical wind profiles Wang et al. (2015)

 Radar Precipitation, wind Vivekanandan et al. (2014)

 Lidar Vertical profiles of wind and humidity Lux et al. (2018)

 AMDAR Temperature, pressure, relative humidity, and wind profiles during ascent,  
descent, and en route, by commercial aircraft

Petersen (2016)

 Mode-Selective  
  Enhanced Surveillance  
  (Mode-S)

Temperature and wind retrievals from routine messages broadcast by  
commercial aircraft

Stone and Pearce (2016)

 Unmanned aircraft In situ and remote sensing platforms mounted aboard small and large  
unmanned aircraft systems

Cione et al. (2020)

Space-based sensors

 Cloud sensors Routine monitoring from geostationary satellites and polar orbiters, plus new 
continental, mesoscale, and “flex” modes aboard geostationary satellites

Stephens et al. (2018)

 Precipitation sensors Constellation of sensors aboard multiple polar-orbiting satellites Skofronick-Jackson et al. (2017)

 Optical and infrared  
  sensors

Increased resolution of hazard monitoring under clear skies Schmit et al. (2017)

 Radar sensors Additional data in cloudy and rainy regions, including severe storms Goodman et al. (2013);  
Hou et al. (2014)

 Lightning sensors Total lightning detection from geostationary satellites Goodman et al. (2013)

 Lidar; aerosol sensors Vertical wind profiles; aerosol direct detection Lux et al. (2020)

 Global navigation  
  satellite system/ 
  global positioning  
  system

Zenith Total Delay to estimate precipitable water; Delay Doppler Mapping to 
estimate soil moisture, water, and wind; refractivity measurement of water  
vapor

Guerova et al. (2016);  
Ruf et al. (2016)

 CubeSats Constellation of small sensors Blackwell et al. (2018)
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simple binary observations made by nonprofessionals. Such observations may include 
rain, snow, hail, fog, flood, mudslides, wind damage, fire, and tornadoes (e.g., mPING; 
Elmore et al. 2014).

Ground-based in situ observations are well suited to monitoring the parent synoptic-
scale weather systems within which hazardous weather may develop. However, they are 
mostly too coarse to capture the full details of the hazards themselves, though relatively 
high-density mesonets have been implemented in a few countries. Ground-based remote 
sensing observations are available in some countries. Radars provide the foundation for 
high-resolution precipitation mapping, and the detection of the parent structure of extreme 
local winds including microbursts and tornadoes. Polarization diversity enables the detec-
tion of large hail and rain–snow discrimination. However, radars are expensive to install 
and maintain, and they need to be close enough together to sample rainfall everywhere 
at altitudes that correlate well with the surface rainfall. Aircraft observations provide 
an additional capability, but commercial flights are limited by fixed paths, and special 
missions targeted at hazardous weather are compromised by range limitations and safety 
considerations.

Satellite remote sensing forms the core of observations for numerical weather analysis 
and prediction. Traditional passive sensors detect radiation emitted or reflected from the 
atmosphere and its constituents at multiple wavelengths, yielding retrievals of temperature 
and moisture. More recent advances include cloud sensors, lightning sensors, atmospheric 
motion vectors (AMVs) based on cloud tracking, and global positioning system (GPS) radio 
occultation. Active sensors emit radiation and detect the amount that is reflected or backscat-
tered from targets, with recent developments including precipitation radars and active wind 
lidars. A detailed review of satellite observations including the hydrological cycle, weather 
analysis and prediction, and atmospheric composition is provided by Ackerman et al. (2018). 
Over several decades, radiances and derived quantities such as AMVs from geostationary and 
polar-orbiting satellites have formed the basis for model initialization on the synoptic scales, 
especially over the oceans. Moreover, recent increases in horizontal resolution together with 
the new ability for geostationary satellite sensors to adaptively scan mesoscale sectors now 
allow for the sampling of high-impact weather systems down to the convective scales. The 
increase in scanning frequency in geostationary satellites, now of order 1–10 min, allows 
for the timely capture of the rapid evolution of convective systems. The leading numerical 
models and data assimilation schemes therefore face a challenge to fully exploit the vast 
volume of satellite data at these advanced temporal and horizontal spatial resolutions. On 
the other hand, several limitations, which vary depending on the type of sensor, include the 
restricted vertical resolution, the limited ability to sample below cloud tops, and the attenu-
ation of radiation in precipitating systems. Low-Earth-orbiting satellites provide very few 
passes each day over any particular region. These deficiencies are exacerbated in hazardous 
convective weather systems.

Hazard monitoring: Challenges and suggested foci. The design and implementation of 
hydrometeorological, climate, and environmental observational networks at fine resolution 
is expected to focus on urban and specialized environments (e.g., nuclear power stations, 
dams; WMO 2019). Some examples of new augmentations are illustrated on the right panel 
in Fig. 6. Key questions for future network design include: What needs to be observed: 
the phenomenon, its environment, and/or its precursors? Where and when do the target 
area and/or upstream regions need to be observed? Are multiple applications supported? 
Several technical challenges remain, including the integration of multiple sources of mea-
surements and sharing of data and metadata. Three major challenges and suggested foci 
are described here.
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surfaCe in situ monitoring. Crowdsourcing, professional networks, vehicles, and social media 
contain vast amounts of information on the weather and its impacts, at a much higher density 
than a decade ago, but their effective use depends on overcoming challenges in accessibility, 
selection, quality control, and integration. High density is particularly needed in urban ar-
eas, where observations are influenced by the urban fabric, and so are only representative of 
the immediate surroundings. The use of such unrepresentative data poses many challenges, 
but urban models are now being designed to capture the characteristics of urban canyons, 
green and blue spaces, and the built environment (Schoetter et al. 2017; Ching et al. 2018). 
Unmanned aerial vehicles and cell phones have sensors that could be of value for monitoring 
and forecasting. For winter weather, the observation of multiple precipitation types remains 
a challenge.

surfaCe remote sensing. While ground-based radar can potentially provide information 
on humidity via refraction of fixed returns, complex processing is required. Microwave at-
tenuation using commercial cell phone links is an alternative or complement to radar rain 
measurement, but data are proprietary and access is an issue. New services can benefit from 
higher wavelength radars and lidars. Networks of cameras also offer the potential for analyz-
ing clouds, fog, and wind.

satellite remote sensing. Challenges include the interpretation of data from heterogeneous 
scenes, such as cloud-contaminated infrared. To augment the conventional satellite network, 
relatively low-cost satellites such as CubeSats are increasingly being proposed for the obser-
vation and forecasting of high-impact weather events, potentially leading to a more compre-
hensive but less integrated and long-term space-based observing capability.

Observation-based nowcasting: Requirements and current status. While the WMO defini-
tion of nowcasting (WMO 2017) has evolved over the years from lead times from 2 to 6 h by 
any method, it is generally viewed as primarily “observation-driven forecasting” (as opposed 
to model-driven forecasting). Originally, nowcasting was synonymous with warnings of thun-
derstorm hazards, whose small-scale details were unable to be captured by numerical models. 
Forecasters would first issue hazardous weather “watches” that used large-scale observations 
and models to predict the environmental conditions conducive to the imminent development of 
thunderstorms. Forecasters would then issue hazard “warnings” based, for example, on radar 
pattern recognition and science-based conceptual models. Nowcasting has been extended to 
precipitation predictions through the computer extrapolation of radar images. These are limited 
to predictions of less than 2 h, as the small hazardous elements of most precipitating systems 
such as tornadoes, hail, and heavy rain cores have very short life cycles (an exception being 
supercell thunderstorms). In contrast, the larger and less hazardous synoptic-scale precipitat-
ing systems can be extrapolated for much longer periods of time, beyond 6 h. Also, nowcast-
ing systems have been developed to blend radar with model precipitation fields to attempt to 
extend the lead time, with a goal to achieve the skill levels appropriate for issuing warnings.

At these very short ranges, forecasters and emergency managers are looking for definitive 
information that enables fast and accurate decision-making. Due to the nature of hazardous 
weather, the relevance of an observation to future events falls off rapidly with time, making 
predictions highly perishable. This type of nowcasting has particularly focused on rapidly 
developing hazardous weather such as convective storms, heavy rain, and strong winds 
including tornadoes and downbursts, hail, and lightning. Specialized services for events (e.g., 
conventions, sports, terrorism) and applications (e.g., oil rig operations, concrete pouring, 
port operations) use nowcasting methods that are often developed by the private sector to 
address niche requirements.
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Observation-based nowcasting: Challenges and suggested foci. Numerical weather pre-
diction (NWP) on the synoptic and mesoscales is often capable of providing the information 
required for issuing watches for precautionary and preparatory actions. Increased attention 
is therefore now being directed toward the gaps in the capabilities to issue hazard warnings, 
and to inform response and recovery actions. With a maturing capability of NWP to predict 
convection, the key challenges and suggested foci in nowcasting are directed increasingly 
toward rapidly developing storms and their hazardous weather elements.

Scale remains a major challenge. For example, damaging floods can be produced by 
intense rain from a single stationary subkilometer storm. Detecting and highlighting that 
possibility demands advanced observation processing and human interfaces to access the 
relevant information quickly. Furthermore, the relationship between what can be observed 
and the hazard that may result depends on a detailed knowledge of local topography, land 
use, vegetation, and potential projectiles (parked cars, fallen trees, trash, temporary sediment 
accumulations, etc.). Obtaining up-to-date information and integrating it into the NWP and 
forecasting process at a sufficiently finescale is a major challenge. Process modeling is limited 
in this area, which is a major opportunity for application of machine learning techniques.

The rapid development or intensification of high-impact weather and related hazards is 
generally associated with nonlinear processes, characterized by rapidly growing uncertainty. 
Another missing link is the physical mechanism to initiate convection. However, case-study 
analyses have shown that there are often signals in the data (e.g., “fine lines” in the boundary 
layer) that provide indications of future initiation that taps into the larger-scale environment 
for development. Progress to date has largely depended on using these analyses to develop 
empirical rules-based forecasting methods. Moving beyond this empirical approach will 
require observation systems that can effectively observe these signals (e.g., highly sensitive 
radars, lidar and radar networks that can detect the lowest levels of the atmosphere over 
broad areas), assembly of multisensor datasets, and the use of data assimilation and new 
approaches such as machine learning.

Multiscale data assimilation, ensemble prediction, and coupled hazard modeling
Forecast products from NWP systems have been routinely used in the preparation of high-
impact weather warnings, through providing information on the evolving large-scale situation 
prior to the warning being issued. For example, warnings based on NWP have been in effect 
for winter storms and tropical cyclones over several decades. More recently, warnings based 
on NWP have been extended to include convective-scale weather (Stensrud et al. 2009). Much 
of this progress has been enabled through successive improvements to the spatial resolution 
of NWP models, with regional convection-permitting models now operating at a horizontal 
grid spacing of 1–2 km. These models allow for the representation of (i) convective storms and 
their associated hazards, (ii) the underlying topography and its interaction with near-surface 
weather, (iii) smaller predictable spatial scales for very short-range forecasts, and (iv) inter-
action with small-scale ocean and land surface hazard processes. However, a considerable 
gap remains between the practical predictability and intrinsic predictability for high-impact 
weather systems. To close this gap and realize the benefits of improved model representa-
tions, focused efforts are required particularly in data assimilation, ensemble prediction, and 
coupled modeling of the hazards.

Multiscale data assimilation: Requirements and current status. Data assimilation (DA) 
blends together observational data with a “first guess” field, normally a short-range forecast 
from a numerical model or ensemble, to provide the initial conditions for NWP. DA technique 
development and applications have received considerable attention in recent years, especially 
for convective and smaller scales, and new challenges are emerging.
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Advances in producing accurate initial conditions down to the convective and even smaller 
scales are necessary to address the challenges outlined in Table 1. Following initial efforts 
by Lilly (1990), research into techniques to initialize convection-permitting models has pro-
duced encouraging results (Sun et al. 2014; Gustafsson et al. 2018). In parallel, the number of 
observations available for assimilation on all scales is increasing, due in part to the growing 
number of platforms and sensors, and also to continuous gains in computational power. Earlier 
efforts in convective-scale DA needed to focus on reducing the model spinup, by producing 
convective-scale analyses and through diabatic initialization. More recently, attention has 
evolved to address the problem of multiscale DA, in recognition that the convective-scale infor-
mation can be quickly lost during the subsequent forecast without an accurate analysis across 
the scales. Major operational centers throughout the world are now assimilating multiscale 
data in convection-permitting regional NWP systems with 1–3-hourly rapid update cycles. 
The ingredients of the data flow in such modern NWP and DA systems are summarized in 
Fig. 7. Some recent advances are described in the next two paragraphs, with specific details 
and references provided in Table 3.

Over the past two decades, there has been substantial progress in DA technique develop-
ment and applications on all scales. The 4DVar technique has demonstrated its capability 
in global models, and more recently in convection-permitting models. In parallel, the en-
semble Kalman filter (EnKF) has come to the fore in research and operational NWP, again 
at all scales. Recent research and operational DA development has centered on hybrid 
ensemble–variational (EnVar) approaches that combine the benefits of the variational and 
ensemble approaches. Several variants have been proposed using different blends of the 
climatological background error covariance with the flow-dependent error covariance. 
The benefits have been demonstrated for global models and coarse-resolution regional 
applications, and more recently for convective-scale DA, although challenges remain. 
However, the variational, EnKF, and hybrid techniques are usually reliable only when the 
dynamics are quasi-linear. When the convective-scale physical processes are resolved with 
a kilometer-scale model, the model prediction may manifest rapid nonlinear error growth, 

Fig. 7. Outline of the data flow in a kilometer-scale rapid update prediction system. Very short-
range forecasts will be based on the latest observations or on the most recent NWP cycle. Longer 
forecasts may use multiple NWP cycles to optimize ensemble spread.
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and there are likely to be spurious model adjustments when a forecast is integrated from 
the analysis created by an imperfect DA technique. An example of a nonlinear DA technique 
is the particle filter, which uses ensemble members or “particles” to produce probabilistic 
analyses of non-Gaussian variables such as hydrometeor mixing ratios. No assumptions 
are made about the prior or posterior error distributions. While particle filters are compu-
tationally expensive, new approaches to improve their efficiency are being developed. A 
localized particle filter (Poterjoy et al. 2017) assumes the dynamical system to be a set of 
loosely coupled systems, which allows for the localization of the effect of observations and 
therefore the number of required particles. A localized particle filter may produce more 
physically consistent posterior members than the EnKF, leading to fewer spurious model 
adjustments during forecasts.

Table 3. Summary of recent advances in multiscale data assimilation, with key references.

Recent Advances: Multiscale Data Assimilation

Technique Capability Key References

Methodologies

 Multistep DA Observations that sample different scales of motion are assimilated using  
different cost functions and localization radii

Tong et al. (2016)

 Multiscale DA Systematic approaches via sophisticated localization related to observation  
density, physical correlation length, model resolution, etc.

Buehner and Shlyaeva (2015);  
Li et al. (2015)

 EnKF convective-scale DA Applications of EnKF to convection-permitting models Tong and Xue (2005);  
Bick et al. (2016)

 4D variational (4DVar) DA 4DVar systems for synoptic-scale and convective-scale applications Rabier et al. (2000);  
Li et al. (2018)

 Ensemble–variational  
  (EnVar) DA

Blends of the climatology background error covariance (variational) with the flow  
dependent error covariance (ensemble-based) and applications to both synoptic  
scale and convective scale

Clayton et al. (2013);  
Lu et al. (2017)

 Particle filter Simulated radar observations assimilated within a local particle filter demonstrated  
the potential for producing probabilistic analyses of non-Gaussian variables,  
such as hydrometeor mixing ratios

Poterjoy et al. (2017)

DA of ground-based sensors

 Ground-based radar Convective-scale assimilation of radar radial velocity and reflectivity assimilation  
for high-impact weather prediction

Ballard et al. (2012);  
Sun and Wang (2013)

 Dual-polarization radar Research on the potential of assimilating dual-polarization data to improve  
high-impact weather prediction

Li and Mecikalski (2012);  
Augros et al. (2018)

 Lightning Assimilation of lightning flash rate on convection-permitting grids Fierro et al. (2012);  
Dixon et al. (2016)

DA of airborne sensors

 Aircraft radar Improved tropical cyclone intensity prediction by assimilating airborne radar  
observations into a convection-permitting model using the 4DVar or EnKF DA method

Zhang and Weng (2015)

 Mode-S High-density wind and temperature data during takeoff and landing enabled  
improved initialization of atmospheric structure

Strajnar et al. (2015)

Convective-scale DA of space-based sensors

 All-sky (cloudy)  
  radiance DA

Assimilation of 5–15 min all-sky radiances from geostationary satellites to improve  
tropical cyclone and severe storm predictions

Honda et al. (2018);  
Zhang et al. (2019a)

Convective-scale DA of combined remote sensors

 Satellite and radar Assimilation of combined observations proved beneficial to severe storm prediction  
compared with assimilation of a single type

Zhang et al. (2019b)

 Radar and lightning Assimilation of both observations in a 4DVar system significantly improved the  
structure and intensity of a local-scale convective system

Xiao et al. (2021)
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In parallel with technique development, applications of DA on multiple scales have prolif-
erated in recent years. The most common research applications on convective scales involve 
radar DA for high-impact weather prediction. In addition to ground-based radar measurements 
of radial velocity and precipitation, airborne radar and dual-polarization Doppler radar obser-
vations have demonstrated promise in improving predictions of tropical cyclones and severe 
weather. Research has also expanded to other types of observations, such as geostationary 
satellite data. Historically, most satellite channels have been used only in clear-sky conditions. 
Recent developments have led to the use of such data also in cloudy conditions, again with 
applications to individual severe storms and tropical cyclones. Several studies using differ-
ent DA techniques and convection-permitting grids have also provided encouraging results 
on the assimilation of lightning data. In addition to covering data-sparse regions between 
radar networks, lightning data can detect rapidly growing cells within a convective system. 
Another recent area of success is the use of mode-selective enhanced surveillance (Mode-S) 
wind and temperature data from aircraft. The high density of these data during takeoff and 
landing enables improved initialization of atmospheric structure over that available from 
conventional observations only.

Multiscale data assimilation: Challenges and suggested foci. Creating high-resolution 
analyses at O(1) km that contain multiscale information is a key challenge for the future 
success of improved NWP for high-impact weather warning. For tropical cyclones, accurate 
rainfall forecasts require the eyewall and rainband structures to be accurately initialized 
in combination with the overall vortex dynamics. For severe convective storms, the three-
dimensional cloud structure must be initialized consistently with the dynamics of the cloud 
and its environment. For topographically driven systems, the local response must be initial-
ized in balance with larger-scale forcing and the resolved topography. The challenge is not 
just to produce an initial state that gives an accurate forecast, but one that evolves smoothly, 
with minimal noise or spinup, so that very short-range forecasts can be used as input for 
hourly cycling, for instance. Below we suggest four foci that can potentially lead to meeting 
the challenge.

integrated assimilation of multiple types of observations. Monitoring systems that are deployed 
for different purposes, with different sensors, characteristics, and scales of motion, need to 
be integrated to meet the needs of high-impact weather forecasting. For example, operational 
radar networks sample wind and precipitation with less than 1 km horizontal resolution and 
5–10 min temporal resolution, whereas radiosondes provide observations that are typically 
hundreds of kilometers apart every 6 or 12 h, but with a very fine vertical resolution. Merging 
these and other disparate datasets will require sophisticated DA systems at high resolution 
that account for error characteristics of each technology, each sensor type, and each scale 
of motion. The design of the monitoring network needs to take account of how this will be 
achieved. Since most DA studies on the convection-permitting scale have evaluated the im-
pact of a single type of unconventional observation, new methods are needed to optimally 
merge the high-resolution observations along with conventional observations. New types of 
data include crowdsourced observations from professional observing sites with nonstandard 
exposures and pressure observations from smart phones. The challenges of quality control 
and of estimating observation errors are substantial, and much work remains to be done 
before integrating these into routine operational application.

Quantifying observation, model, and da unCertainties. Diagnosing and understanding the 
uncertainties in observations, convection-permitting model forecasts, and DA systems, es-
pecially those related to atmospheric convection, are necessary for future development of 
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multiscale DA. To optimally extract multiscale information from a mix of observation types, 
not only their measurement errors but also their correlations, representativeness character-
istics, and information content must be understood and quantified. Furthermore, diagnosis, 
understanding, and correction of multiscale forecast bias and noise is important in a rapidly 
cycled system such that a true continuously cycled system can be built without requiring 
periodical restarts.

developing approaChes for multisCale da at O(1) km. The rapid nonlinear development of 
convective storms and other kilometer-scale disturbances requires frequent updating (typi-
cally hourly) of the model forecast with assimilation of the latest observations. This requires 
a smooth transition from initial state to forecast, with minimal noise or spinup bias. Methods 
of addressing initialization noise in larger-scale models have included filters, penalty terms in 
variational DA, and forms of diabatic initialization. Application to kilometer-scale prediction 
is more challenging as the required balances are implicit in the local atmospheric structure, 
rather than universally defined by geostrophic constraints. Whereas it is important to pro-
duce an initial analysis with small-scale balance to minimize spinup, the underlying large-
scale balance must not be compromised. Localization schemes capable of taking account of 
multiple-scaled observation types, observation density, ensemble size, and flow-dependent 
correlation length of the modeled flow need to be explored. The multistep DA approach, in 
which observations with different spatial resolutions and temporal frequencies are assimi-
lated at different steps, also deserves further study. Since warning is a cascading process, 
from longer lead times and larger regions to shorter lead times and specific locations, the 
multistep approach offers flexibility in the use of DA techniques, selections of observation 
types, grid resolution, and cycling frequency in each step depending on the desired applica-
tion. Nevertheless, experimental and theoretical studies are required to design such systems.

development of advanCed da teChniQues for ConveCtive sCale. The benefits of hybrid DA have 
been demonstrated for global systems and implemented operationally. However, its application 
in convection-permitting regional DA systems lags behind. More research is required to deal 
with several issues pertaining to the convective scale in a hybrid system. Among them are 
the selection of ensembles that can represent multiscale uncertainty of high-impact weather, 
optimal design of rapid update cycles, multiscale covariance localization, improving estima-
tion of static background error covariance, and dealing with nonlinearity and non-Gaussianity 
of clouds and precipitation. The utility of 4DVar multiscale DA should be further explored. In 
addition to further examination of its role in hybrid EnVar DA, one of the key scientific ques-
tions deserving exploration is how to assimilate multiscale observations with varied lengths 
of assimilation windows for different nonlinear outer loops. The encouraging recent results 
of nonlinear filters such as the local particle filter for high-impact weather warrant further 
studies for convective-scale DA.

Multiscale ensemble prediction: Requirements and current status. Several days ahead of 
a high-impact weather event, NWP provides guidance on the potential for local weather in 
a region. Examples include winter storm or tropical cyclone tracks, or whether heat waves 
or pollution episodes will begin or continue. Less than 2 days ahead, the guidance ranges 
from more deterministic for larger-scale weather systems (e.g., heat waves, fronts) to more 
probabilistic for smaller scale short-lived systems (e.g., severe storms), while midlatitude and 
tropical cyclones are intermediate in the sense of deterministically knowing that there is a 
swath of large risk, but not its exact structure or impacts. While the forecaster is able to use 
experience to judge the uncertainty qualitatively, high-impact weather forecasting requires a 
quantitative uncertainty assessment, tying risks to specific locations (e.g., urban areas) and 
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times. This requirement motivates the use of ensemble prediction systems (EPSs), which are 
expected to improve on the practice of a forecaster judging deterministic forecasts for their un-
certainties. Features with sharp boundaries between hazardous and nonhazardous weather, 
such as severe storms and precipitating systems, are particularly challenging in this regard.

An EPS produces a range of forecast scenarios that, taken together, can be used to predict 
the likelihood of a hazardous weather situation occurring or of a hazardous threshold being 
surpassed. Global EPSs were initially designed to capture uncertainties of synoptic-scale 
motions, and the more recently introduced stochastic parameterizations (Berner et al. 2017) 
can capture uncertainties on all resolvable scales including the mesoscale. Other ensemble 
perturbation methods continue to be designed and implemented. Global EPSs can also ex-
ploit reforecasts, which can be used to diagnose model bias and statistically correct forecasts 
(Hamill et al. 2006). Convective-scale EPSs currently comprise regional models that capture 
phenomena including short-lived severe storms, bands of intense snow, or wind and rainfall 
distributions in tropical cyclones. Examples of some challenges are described below.

Nonhydrostatic models run at convection-permitting scales (<4 km) with state-of-the-art 
physics parameterizations (surface, planetary boundary layer, microphysics, radiation) are 
able to represent the general characteristics of storm development and evolution, although 
not necessarily the exact location, structure, and timing. Many operational NWP centers now 
have nonhydrostatic national-scale models with grid sizes of one to a few kilometers that 
resolve not only large convective cores but also the major features of complex terrain and 
associated flows that may impact local weather.

Requirements for tackling uncertainty in short-range forecasts of convective cloud systems 
are different from those that formed the basis of medium-range EPSs. Bowler et al. (2008) 
outlined the differences: in resolution, initial perturbations effective at short lead times, and 
representation of model uncertainties that influence surface variables. High resolution implies 
nesting, which introduces the complication of matching boundary perturbations. With the 
implementation of convection-allowing models (CAMs), research has turned to configuring 
EPSs at this scale. The processes involved in convective cloud systems are a challenge to 
initial perturbation specification with much greater growth rates anticipated, while many 
more model processes need to be explored as potential sources of uncertainty. It remains 
important to recognize that the large scales continue to provide the environment for convec-
tive development, and therefore remain important sources of uncertainty.

Experimentation with CAMs began at NOAA’s Hazardous Weather Testbed in 2004 
(Kain et al. 2017). This allowed forecasters to be exposed to CAMs where diagnostics such 
as simulated reflectivity and updraft helicity have proven to be valuable, given the ability of 
CAMs to resolve storm cells. With coordinated efforts from different groups, a single ensemble 
framework called the Community Leveraged Unified Ensemble (CLUE; Clark et al. 2018) 
with a common set of model specifications (e.g., grid spacing, vertical levels, domain size) 
was developed with the goal of identifying optimal design and configuration strategies 
for CAM-based ensembles for near-future operational systems. Experience in ensemble 
storm-scale real-time forecasting is further exemplified by Schwartz et al. (2015) using 10 
members at 3 km from a 15 km EnKF DA system where probabilities are derived including 
proxies for hail and tornadic risks. More recently, several operational centers have begun to 
run convection-permitting ensembles, e.g., MOGREPS-UK at 2.2 km, AROME-EPS (France) 
at 2.5 km, and COSMO-DE-EPS (Germany) at 2.8 km, while in the United States the HRRR 
Ensemble (HRRRE) at 3 km is being evaluated. MOGREPS-UK has recently been upgraded 
to an hourly cycle, using a moving 6 h window to create an 18-member combined perturbed 
and lagged ensemble (Hagelin et al. 2017). An example of a probabilistic product computed 
directly from such ensembles is the probability of exceeding an extreme rainfall threshold 
within 50 km of a location. The calibration of raw ensemble probabilities to remove biases 
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remains a challenge and relies on experience with the model. Reforecasts may be applied to 
CAM-based ensembles if the locations of extreme weather features are accounted for, which 
will likely require alternative methods to point verifications. Reforecasts are also used in the 
training of bias-corrected analog ensembles (Alessandrini et al. 2019).

Ensemble forecasts of tropical cyclones are increasingly being used operationally, with 
new ensemble-based techniques and products under development. The probabilistic skill of 
ensemble-based track forecasts is improving (Titley et al. 2020), which is expected since the 
track is largely determined by the synoptic-scale flow. Although the progress in ensemble 
predictions of structure and intensity are lagging, several centers are now using downscaling 
on demand in high-resolution prediction, where a single refined convection-permitting grid 
follows a tropical cyclone nested within a coarser model. For example, NOAA’s Hurricane 
Weather Research and Forecasting (HWRF) model employs moving 6 and 2 km grids around 
the world. Other similar examples include the U.S. Navy’s COAMPS-TC, China’s GRAPES-
TC, and the Taiwan Central Weather Bureau’s TWRF. Recent research with a fixed regional 
convection-permitting model by Short and Petch (2018) has also demonstrated improved 
intensity forecasting, especially in periods of rapid intensification.

Finally, even when ensemble predictions are available, the utilization and presentation of 
probabilistic forecasts by forecasters is varied. Possible reasons include a lack of availability 
of ensemble data or time to synthesize them under an operational timeline, or the unfamiliar-
ity that some forecasters, officials, and emergency managers may possess in communicating 
and/or interpreting probabilistic output.

Multiscale ensemble prediction: Challenges and suggested foci
Surface interactionS. While models at kilometer-scale have sufficient resolution, dynamics, 
and physics to represent much hazardous weather, further work is needed to adequately 
model the interaction between the surface (marine and land) and the internal cloud dynam-
ics and physics, particularly those aspects that remain unresolved. Computing advances 
are making it possible to have focused grids in the 100–300 m scale over small regions of 
interest, such as urban areas. For example, the United Kingdom’s Met Office is using a 100 m 
grid domain over London (Lean et al. 2019), and Environment and Climate Change Canada 
has tested 250 m over Vancouver (Leroyer et al. 2014). However, such models remain in the 
gray zone where large turbulent eddies are resolved but smaller ones are not, and where the 
heterogeneity and complexities of the surface topography and the urban built surface are at 
scales comparable to the grid scale. Alternative approaches to downscaling include the use 
of surface urban models instead of full atmospheric models, statistical downscaling (e.g., for 
local heat islands or wind-prone urban canyons), and offline precomputation of scenarios 
indexed to the larger-scale forcing (Speight et al. 2018).

unCertainty QuantifiCation on kilometer sCales. For weather features that are resolved by the 
model, the uncertainty of the initial state and of the small-scale processes requires that any 
prediction is accompanied by a quantitative estimate of uncertainty. While kilometer-scale 
EPS can provide probabilities and give a better chance of capturing risks of extreme events, 
obtaining an ensemble that spans the range of likely weather without excessive spread re-
mains a challenge. Interactions of storms with each other and with complex terrain (e.g., for 
streamflow) is highly stochastic, regardless of the accuracy of initial conditions, and the chal-
lenge is to have enough ensemble members to represent the sources of uncertainty. Ensemble 
spread is generated by perturbing the initial conditions, the lower boundary state, and the 
model processes, within realistic ranges, but more research is needed to do this effectively at 
kilometer-scale and to calibrate the resulting ensemble probabilities. A particular challenge at 
kilometer-scale is to interpret an ensemble in which single members may contain forecasts of 
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apparently unrelated extreme events. Upscaling (aggregating to a coarser resolution) provides 
one solution, but at the cost of losing the additional information at small scales.

initiation and maintenanCe of ConveCtive proCesses. While nowcasting addresses preexisting 
storms out to about an hour, NWP needs to play a crucial role in forecasting features such 
as short-lived storms or hazards that may not be in the initial state but are favored by large-
scale conditions. A suggested focus is the accurate probabilistic representation of convective 
initiation, which is expected to improve as the above two priority areas (surface interactions 
and kilometer-scale uncertainty quantification) mature. For forecasts with convective features 
present at the initial time, the DA and ensemble challenges are to include them in such a way 
that the model can forecast them seamlessly and consistently with the larger-scale processes, 
capturing uncertainty evolution in order to meet the needs of decision-makers for information 
on probability and impact.

tropiCal CyClones. As is also the case for extratropical cyclones, the challenge of predicting 
tropical cyclone structure (including size) and related hazards is intrinsically multiscale, 
depending on complex physical processes over a wide range of temporal and spatial scales. 
Using a combination of observations, idealized modeling, and case simulations, many authors 
have provided insights into the large-scale control of structure and intensity through vertical 
wind shear and air–sea interactions, and also the roles of internal dynamics and physics. A 
logical next step is to use these recent advances in process understanding to address related 
issues in predictability. While the intrinsic predictability of different tropical cyclone haz-
ards depends in large part on the tropical cyclone track, the individual processes (e.g., rapid 
intensification) and hazards (e.g., extreme rainfall) possess varying levels of predictability, 
and the predictability may change from storm to storm. By developing an improved under-
standing of multiscale interactions and their predictability, the priorities of accurate DA and 
quantification of uncertainty of multiscale hazards in tropical cyclones can be addressed in 
operational-quality ensembles.

Multiscale coupled hazard modeling: Requirements and current status. While some 
weather impacts such as wind damage, snow, and ice storms are direct, many other weather 
impacts largely occur indirectly. Prediction of these hazards is achieved using flood, storm 
surge, ocean wave, and fire models, among others. Coupling of the oceans and land surface 
hydrology with the atmosphere in Earth system models has a long history in climate model-
ing, where the fluxes among these different parts of the environment are key to modeling 
climate variability. However, such integration has been slow to develop in operational weather 
forecasting, partly for practical reasons of speed and computer capacity, and partly because 
the dominant processes occurring on these short time scales are in the atmosphere. Instead, 
hazard models are generally run separately using meteorological inputs from NWP.

There is now a growing movement toward closer integration, partly to provide better hazard 
warnings, and partly because of the recognition of sensitivities to the feedbacks between 
different parts of the environment, such as in the vicinity of strong gradients of moisture, 
temperature, or friction. Modeling the coupled environment is challenging, not least because 
the natural spatial and temporal scales of the processes are so different. For instance, river 
modeling at 1 km scale is considered coarse, while inundation models need 10 m resolution 
or finer, especially in urban areas. The major sources of uncertainty are also different. For 
storm surges, the neglect of a recent change in the seabed, coastal development, or accurate 
representation of ocean waves could outweigh any benefit from better modeling of the inter-
action of the atmosphere and ocean. Coupled models are more complex than NWP models, 
requiring more sophisticated DA and ensemble prediction methods. If the result is a delayed 
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transfer of research into operations due to testing complexity or a delayed forecast time due 
to a more complex model, the result may be a less effective warning, despite the benefits of 
coupling.

Several advances have been made in coupled global and mesoscale weather prediction. 
First, importance of soil moisture gradients has long been recognized and is represented 
to some degree in most models. Second, coupled ocean waves were recently introduced by 
ECMWF to represent the effect of wave age on atmospheric drag. The ECMWF coupled atmo-
sphere–wave–ocean model, which has been operational since 2013, has been investigated 
in tropical cyclone prediction (Mogensen et al. 2017). The model was found to realistically 
reproduce the air–sea interaction in the presence of passing typhoons. It was also concluded 
that a strong coupled feedback is evident when the heat content of the upper-ocean layer is 
low, while a very weak coupled feedback is found when the ocean has a thick warm mixed 
layer. Finally, aerosol modeling has advanced substantially. Simplifications of full chemistry 
have proven to be effective. An example is the incorporation of aerosols into models such as 
the HRRR without greatly increasing the computational expense. Recent research into the 
interactions of aerosols with radiation and clouds has led to a move from using prescribed 
aerosols in NWP toward modeling the distribution based on emissions, transport and chem-
istry (Benedetti and Vitart 2018).

Most of the above activities are oriented toward medium-range forecasting, where the 
interaction terms have time to grow to a size that can significantly influence the weather. 
By contrast, the U.K. Environmental Prediction project (Fig. 8) and the Great Lakes Water 
Cycle project in Canada (Durnford et al. 2018) have been focused on much shorter ranges 
where details of the air–sea–land interactions can lead to specific hazards, particularly 
fog and ice fog over the sea and storms over land. An example of the impact of air–sea 
coupling on heavy-precipitation events in coastal Mediterranean regions is given by 
Rainaud et al. (2017).

Fig. 8. Concept diagram of the U.K. Environmental Prediction (UKEP) coupled modeling project 
(H. W. Lewis 2018, personal communication). Progress to date is described in Lewis et al. (2018).
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Multiscale coupled hazard modeling: Challenges and suggested foci
obServationS. Coupled hazard modeling imposes challenges on all aspects of the forecasting 
process. Observations of all parts of the environment are required, but only atmospheric 
and oceanographic in situ observations are widely exchanged. There is an urgent need for 
exchange of more atmospheric composition and land surface hydrology information, particu-
larly for variables for which remote sensing by satellites has limited capability.

Coupled data assimilation. DA methods have been developed separately for each component 
of the coupled system, but achieving a consistent initial state remains a major challenge and 
is an area of active research. Magnusson et al. (2019) identified the key challenge of initial-
izing the ECMWF coupled ocean–atmosphere model simultaneously by using “outer loop” 
coupling in the analysis, where the 4DVar nonlinear integrations use the coupled model, 
but the minimizations are performed separately for the atmospheric and oceanic states. This 
improvement should lead to more consistent oceanic and atmospheric states with reduced 
initialization shock; more timely sea surface temperature (SST) analysis including the diurnal 
cycle; and use of in situ ocean observations to provide atmospheric increments, particularly 
under cloudy conditions. Improved assimilation of ocean surface data (e.g., from scatterom-
eters) is further expected to improve representations of ocean surface exchanges and coupling 
with the wave and ocean models. A consistent representation of initial and model uncertainty 
in coupled EPS is also crucial.

Coupled modeling teChniQues. The coupling procedure itself is an outstanding challenge that 
depends on the consistency of the different components, especially where different resolutions 
are used. A key test of completeness and consistency of the coupling will be to achieve bal-
anced heat and water budgets through the complete coupled system. Probabilistic prediction 
for hydrological and ocean models has traditionally been based on deterministic modeling 
from an ensemble of atmospheric inputs, ignoring further uncertainty, but future coupled 
systems will need a consistent application of appropriate perturbation methods for each 
component of the system [e.g., Édouard et al. (2018) for hydrological EPSs]. Finally, where 
the coupled system is being used to directly predict a hazard, the resulting predictions need 
to be competitive with those from uncoupled systems, requiring appropriate postprocessing 
and verification. While several aspects of coupling will gradually appear in NWP systems in 
the next few years, achievement of the full benefits of coupling is a long-term challenge. This 
will require significant investment in diverse scientific approaches to provide opportunities 
for cross-fertilization of ideas (Theurich et al. 2016).

Concluding remarks
In the context of the Multiscale Hazard Forecasting theme of the WMO HIWeather project, this 
paper provides a summary of the current status and future challenges in monitoring and pre-
dicting high-impact weather. Over the past decade, there have been substantial advances in this 
capability and the provision of information required by emergency managers and the public to 
enable more effective preparation, response, and recovery from weather-related hazards. Earlier 
and more reliable indications of the location and severity of probable hazards from convection-
permitting NWP systems have enabled better preparation for high-impact weather. Greater variety 
and accuracy in remotely sensed observations, coupled with access to crowdsourced data, have 
improved the situational awareness of those managing the response during an emergency. 
While these advances have contributed to the continued reduction in fatalities from high-impact 
weather, changes in society and climate are increasing its economic cost. Further improvement 
is therefore needed to continue to reduce fatalities and socio-economic impact. Technological 
and scientific progress will enable further advances in coming years, particularly in the areas of
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1) advanced urban observation monitoring, ubiquitous sensing and social media analysis 
for better situational awareness, and reporting of severe weather and related hazards;

2) novel application of techniques including machine learning to identify the conditions that 
precede severe weather development;

3) achievement of physically consistent multiscale initial states and ensemble forecast dis-
tributions for kilometer-scale models;

4) closer coupling of hazard prediction models with NWP models;
5) more effective communication and use of probabilistic forecast information in the formu-

lation of warnings and decision support products; and
6) greater research and development focus on the specific requirements of emergency 

responders and of societal behavior to hazard warnings.

The HIWeather project brings together groups focusing on each of these areas as well as 
on the structure and effectiveness of the overall warning chain. The project co-chairs and 
theme leaders welcome approaches from researchers and practitioners who are engaged in 
addressing these challenges.
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